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ABSTRACT: The glass transition temperature of polymers
and polymer solutions was approached through a combina-
tion of the group-contribution, lattice-fluid equation of state
and the Gibbs–DiMarzio criterion. The model assumes zero
entropy at the glass transition temperature and treats mol-
ecules as semiflexible chains. This stiffness is associated with
a flex energy obtained from the glass transition temperature
at atmospheric pressure. Whereas the application of the
model is straightforward for homopolymers and polymer
solutions, a new formalism using the dyad concept was
developed for copolymers. It takes into account the copoly-

mer composition as well as the sequencing of the monomers.
The results obtained are consistent with experimental data.
For polymer solutions, the model predictions are semiquan-
titative depending on the system. The interaction parameter
required for binary systems was found to have little effect on
the glass transition temperature predictions. © 2003 Wiley
Periodicals, Inc. J Appl Polym Sci 89: 697–705, 2003
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INTRODUCTION

Polymers are characterized by a distinct transition
from an amorphous state to a glassy state. Although
this phenomenon has been studied extensively, its
nature, kinetic or thermodynamic, is still not known. It
is often referred to as a second-order transition be-
cause the density changes continuously along the tran-
sition, whereas a discontinuity is observed for the
thermal expansion coefficient. The glassy state is not
an equilibrium state in the thermodynamic sense.
Thus, several criteria have been proposed for the oc-
currence of the glass transition. The earliest were
based on the free-volume concept and on the confor-
mational entropy.

Williams et al.1 proposed that the glass transition
temperature occurred at a specific value of the free
volume as determined from the viscoelastic behavior
of polymers. Kelly and Bueche2 later applied this con-
cept to polymer solutions. They proposed that the
polymer solution free volume was equal to the volume
fraction average of the pure polymer and solvent-free
volumes. The model accurately predicted the solution
glass transition temperature. However, below a cer-
tain temperature (52°C in the case of polystyrene and
diethyl benzene), the contribution of the polymer free

volume becomes negative, which is physically incor-
rect.

The most successful thermodynamic criterion of the
occurrence of the glass transition was proposed by
Gibbs and DiMarzio,3, who introduced an entropic
interpretation based on the configurational entropy. In
their original work, the true glass transition tempera-
ture (Tg) is associated with a second-order transition
that occurs at T2, about 50°C below the measured Tg.
As the transition occurs, the molecular configurational
entropy was assumed to be equal to zero. This crite-
rion has been widely used in combination with differ-
ent lattice models for pure polymers, polymer solu-
tions, and polymer blends.4–6

The objective of this work was not to support either
of these theories. Rather, we endeavored to propose a
simple and effective thermodynamic-based approach
requiring the least a priori information to predict the
glass transition of homopolymers, copolymers, and
polymer solutions.

To have a predictive model applicable to copoly-
mers, the pure component parameters were obtained
by using the group contribution method developed by
Lee and Danner7 as applied to the equation of state of
Panayiotou and Vera.8 The combination of the equa-
tion of state (EoS) of Panayiotou and Vera and the
group contribution method are referred to as the
group-contribution lattice-fluid (GCLF) EoS. The
number of configurations available to the system is a
contribution of the intra- and intermolecular configu-
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rations. In the Panayiotou–Vera model, these contri-
butions are expressed in two separate terms. The in-
tramolecular configuration term was assumed not to
contribute to the equation of state. An estimation of
the entropy, however, requires an explicit expression
for the number of intramolecular configurations. In
this work, the intramolecular configuration term was
treated by assuming that each bond can be described
by two energetic configurations. The transition from
one configuration to another is characterized by a flex
energy.

The treatment of copolymers by use of an EoS gen-
erally requires input information such as densities
and/or other thermodynamic data. If a group contri-
bution approach is used, only the molecular structure
of the monomers and their proportion in the copoly-
mer are required. Lee and Danner9 have shown that
with the GCLF-EoS only the molecular structure was
needed to successfully predict the sorption of vapors
in copolymers. In the case of the Tg, the sequencing
drastically affects the glass transition. In the following,
the formalism based on the GCLF-EoS and the Gibbs–
DiMarzio criteria is extended to copolymers for which
the sequencing is treated by using the dyad concept.

THEORY

The general form of the canonical partition function
(as given by Panayiotou and Vera8) for N1, N2, . . ., Np

semiflexible molecules having a configurational en-
ergy, E, was expressed as

Q � � exp��
E

RT� (1a)

Q � �
i�1

p ��i

�i
�Ni

gcgnrexp��
E

RT� (1b)

Here � is the number of configurations available to
the system. It expands into gc, the combinatorial term
assuming a random distribution of the molecules, gnr,
the nonrandom correction for the combinatorial term,
and �i/�i, which account for the flexibility and the
symmetry of a molecule. The lattice-fluid theory as
used in this model approximates the molecule by its
equivalent made of r identical segments occupying
consecutive lattice sites. The symmetry parameter is
thus equal to 2. The flexibility parameter accounts for
the number of internal configurations available to a
semiflexible molecule i occupying ri sites. Each lattice
site is assumed to have a constant volume (vh � 9.75
� 10�6 m3/mol) and a fixed coordination number (z
� 10). The lattice cells may be occupied (by molecules)
or vacant (holes).

Following the treatment of Gibbs and DiMarzio, a
ri-mer is assumed to have two energetic states (z� � 1

of high energy and 1 of low energy). The flexibility
parameter is expressed as a function of fi, the fraction
of ri-mers in the higher energy state10,11:

�i � z��z� � 2
fi

� �ri�2�fi� 1
1 � fi

� �ri�2��1�fi�

(2)

Havlicek et al.12 found a z� value between 4 and 6 for
several polymers from a fit of thermodynamic prop-
erties of polymers. For the current study, z� was set
equal to 4, as suggested by Gibbs and DiMarzio.3

In the treatment of both pure fluids and mixtures,
the holes are assumed to have a random distribution
in the lattice. For pure fluids, the molecules are also
assumed to have a random distribution. The canonical
partition function of pure fluids does not involve the
nonrandomness term that is used for mixtures where
molecules of different species are allowed to have a
nonrandom distribution. Because of this difference,
different treatments are required for pure fluids and
mixtures.

The random combinatorial term adopted was that
proposed by Guggenheim–Huggins–Miller,13

gc �
Nr!

Nh! �i�1
p Ni!

�Nq!
Nr!

�z/2

(3)

Here, Nr and Nh are, respectively, the total number of
cells and the number of holes in the lattice, and zNq is
the number of external contacts displayed by the sys-
tem,

Nr � Nh � � riNi (4)
zNq � zNh � zqiNi (5)
zqi � ri�z � 2� � 2 (6)

The number of external contacts is expressed in eq. (5)
as a function of the product zqi, which is the number of
interacting sites per molecule.

The system energy E is calculated by using the mean
field approximation. It is a contribution of the inter-
molecular interactions and the intramolecular config-
urational energies accounting for the flexed bonds. A
ri-mer has (ri � 2) bonds that may be flexed, each
having an energy 	�i. The total energy of the system is
written as

E � �
i�1

p �
j�1

p

Pij�ij � �
i�1

p

Nifi�ri � 2�	�i (7)

where Pij is the probability of interaction between
species i and j with an interaction potential energy �ij.
A pure fluid i is defined by two specific parameters
referred to as the scaling parameters �ii and ri. In the
present treatments, they are obtained by using the
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group-contribution method implemented by Lee and
Danner.7 The first term of eq. (7) refers to the inter-
molecular interactions. More details on that term
could be found in the original article of Panayiotou
and Vera.8

The equilibrium number of flexed bonds is obtained
by finding the minimum of the canonical partition
function with respect to fi. An expression identical to
that obtained by Gibbs and DiMarzio3 was derived as

fi �
�z� � 2�exp��	�i/kT�

1 � �z� � 2�exp��	�i/kT�
(8)

Following the standard treatment of the partition
function, the equation of state of Panayiotou and Ve-
ra8 is obtained

p̃

T̃
� ln� �̃

�̃ � 1� �
z
2 ln��̃ � q/r � 1

�̃ � �
�2

T̃
(9)

where P̃, T̃, and ṽ are the reduced pressure, tempera-
ture, and molar volume, respectively, and

P̃ � P/P* T̃ � T/T* �̃ � �/�* � �
q/r

�̃ � q/r � 1 (10)

and

P* � z�*/2�h T* � z�*/2R �* � �hrN (11)

with the following mixing rules:

r � �
i�1

p

xiri q � �
i�1

p

xiqi �* � F��ii, �ij�

�ij � ��ii�jj �1 � kij� (12)

The molecular interaction parameter �* is a function
[F(�ii, �ij)] of the pure components interaction energy �ii

and the cross interaction energy �ij. More details on this
relationship may be obtained in the original article of
Panayiotou and Vera.8 Furthermore, the binary interac-
tion parameter kij is obtained by using the group-contri-
bution method implemented by Lee and Danner.7

Pure fluids

The criterion of the Tg as defined by Gibbs and DiMa-
rzio is a value of 0 for the system entropy, which is a
function only of the number of degeneracies. The sys-
tem entropy is expressed as

S � k ln���i

�i
�Ni

gc� (13a)

Substituting eqs. (2), (3), and (8) into eq. (13a) gives

S
kriNi

� ��̃i � 1�ln� �̃i

�̃i � 1� � �z�̃i

2 � 1�ln��̃i � 1 � qi/ri

�̃i
�

�
1
ri

ln��̃i � 1 � qi/ri� �
1
ri

ln�z�ri

2 �
� �ri � 2

ri
��fi

	�i

kT � ln�1 � fi�� (13b)

Here ṽi is the reduced specific volume calculated from
the equation of state for pure component i. For very
large molecules where r approaches infinity, eq. (13b)
becomes

S
kriNi

� ��̃i � 1�ln� �̃i

�̃i � 1� � �z�̃i

2 � 1�ln��̃i � 0.2
�̃i

�
� �fi

	�i

kT � ln�1 � fi�� (13c)

Binary mixtures

For binaries, the nonrandomness term is taken into
account

gnr �

N� 11
0 !N� 22

0 !�N� 12
0

2 !�2

N� 11!N� 22!�N� 12

2 !�2 and N� ij � N� ij
0
ij (14)

Here N� ij
0 and N� ij are the number of energetic external

contacts for random and nonrandom distributions of
species i and j. Panayiotou and Vera have followed the
quasi-chemical treatment of Guggenheim13 to account
for nonrandomness and to obtain the nonrandomness
factor 
ij.

The system entropy is calculated as

S � k ln���1

�1
�N1��2

�2
�N2

gcgnr� (15a)

Substituting eqs. (2), (3), (8), and (14) in eq. (15a) gives

S
krN � ��̃ � 1�ln� �̃

�̃ � 1� � �z�̃

2 � 1�ln��̃ � 1 � q/r
�̃ �

�
1
r ln��̃ � 1 � q/r� �

1
r ln�zr

2 � � �
i�1

2

xi�ri � 2
r ��fi

	�

kT

� ln�1 � fi�� �
z
2r ��
12��̇/kT���

i�1

2

xiqi� � �
i�1

2

xiqiln�
ii��
(15b)
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Here

�̇ � �11 � �22 � 2�12 (16)

Equation (15b) reduces to the pure equation fluid be-
cause the 
ij are equal to 1 for the pure components
because of the random distribution assumption. The
cross interaction energy �12 is obtained from eq. (12).

RESULTS AND DISCUSSION

Pure polymers

In eq. (13b), the only unknown in the expression of the
entropy is the polymer flex energy. A fit of the flex energy
is obtained from the Tg at ambient pressure assuming a
vanishing configurational entropy. The scatter in the re-
ported values for the Tg is quite high. The generally ac-
cepted value for polystyrene is 100°C, although values as
low as 90°C14 and as high as 107°C15 have been reported. In
fact, the glass transition phenomenon spreads over a wide
temperature range, inducing a significant measurement
scatter as can be seen in dynamic scanning chromatogra-
phy thermograms.16 The molecular weight may also play
an important role. Equation (13c) could be used for high
molecular weight polymers.

The effect of pressure on the Tg was predicted by
using the GCLF-EoS and compared against experi-
mental data for poly(methyl methacrylate)17 and poly-
(vinyl acetate).18 As shown in Figure 1, the model
predictions and the experimental results are in good
agreement. Furthermore, the model displays a curva-
ture, indicating an asymptotic behavior of Tg with
pressure, which is theoretically expected.19

Copolymers

Treatment of copolymers requires an average value
for the molecular flex energy. A weighted average

value of the monomeric units is not satisfactory. Fol-
lowing such a procedure, the copolymer Tg cannot be
lower than that of any of the homopolymers. Lower
values have been found, however, for several cases
such as poly(styrene-co-methyl methacrylate),20,21

poly(vinylidene chloride-co-methyl acrylate),21 and
poly(phenyl acrylate-co-methyl methacrylate).22

The glass transition temperature of copolymers has
often been examined within the framework of several
semiempirical equations.23,24 These approaches were
in the form of an average between the homopolymers
Tg’s and their weight fractions in the copolymer. Eller-
stein25 and later, Johnston,26 pointed out that a copol-
ymer [poly(A-co-B)] comprises three types of dyads:
AA, BB, and AB. A more accurate prediction of the
copolymer Tg must take into account its composition
in terms of the dyads and the Tg of the alternating
copolymer. Barton14 proposed the following equation
for the copolymer Tg:

Tg � wAATgA � wBBTgB � wABTgAB (17)

whereas Johnston26,27 suggested that

1
Tg

�
wAA

TgA
�

wBB

TgB
�

wAB

TgAB
(18)

Here wAA, wBB, and wAB are the weight fractions or
mole fractions of the AA, BB, and AB sequences, and
TgAB is the Tg of the alternating copolymer. The weight
fraction of the dyads has been expressed as a function
of the overall copolymer composition. These expres-
sions have extensively been used with TgAB as a fitting
parameter.22,27

We have combined the GCLF-EoS with the Gibbs
and DiMarzio concept and applied it to copolymers.
Although eqs. (17) and (18) are empirical, the dyad
concept that they are based on is sound. The sequence
distribution of a copolymer has a direct influence on
the Tg. The Tg of an alternating poly(vinylidene-co-
methyl acrylate) is about 15°C higher than that of the
random copolymer with the same composition.21 The
dyad concept can be used to derive the flex energy of
the copolymer as a function of the flex energy relative
to the homopolymers and the alternating copolymer
	�AB. A mixing rule involving the flex energies is
required. The parameter in this mixing rule is neither
the weight fraction nor the mole fraction of the mono-
mers, but the fraction of segments in each type of
dyad. The following relation was used:

	� � s�AA	�AA � s�BB	�BB � s�AB	�AB (19)

Here s�IJ is the fraction of segments from the dyad IJ
involved in the copolymer, 	�AA and 	�BB are the flex
energies of the pure homopolymers, and 	�AB is the

Figure 1 Effect of pressure on the glass transition temper-
ature of poly(methyl methacrylate) and poly(vinyl acetate).
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flex energy of the alternating copolymer. The mono-
mers generally will occupy different numbers of lat-
tice cells. DiMarzio and Gibbs28 have treated this dif-
ference in terms of the number of bonds within each
monomer. The fraction of segments found in the dif-
ferent dyads is not, therefore, a function of the copol-
ymer composition only. The length of the monomer
must be taken into account. Let rA and rB be the
number of lattice sites occupied by monomers A and
B. In this treatment, the number of lattice sites occu-
pied by the monomers is obtained by using the group
contribution method of Lee and Danner.7 The number
of lattice sites occupied by the different dyads is ob-
tained by simple additivity,

rAA � 2rA (20)
rBB � 2rB (21)

rAB � rA � rB (22)

If xAB is the mole fraction of the AB dyad, the mole
fraction of lattice sites it occupies is given by

r�AB �
xABrAB

xAArAA � xBBrBB � xABrAB
(23)

The same equation applies to r�AA and r�BB. As a first
approximation, the fraction of segments from dyad IJ,
s�IJ, is taken as equal to the fraction of lattice sites
occupied by the dyad. Because a molecule occupies
more than one lattice site, however, the contribution of
these bonds to the overall flex energy of a molecule is
averaged out by being counted twice, as shown below.
Let monomer A occupy two lattice sites (solid circles)
and monomer B occupy four lattice sites (open circles):

Let us consider the monomer A common to dyads 2
and 3. The bonds of this monomer contribute to an AB
(dyad 2) and an AA (dyad 3) dyad. The overall mo-

lecular flex energy as expressed in eqs. (19) and (23)
count the flex energy of monomer A in both dyads. In
other words, the overall flex energy of monomer A
will be given an average value of the flex energy for an
AA dyad, 	�AA, and an AB dyad, 	�AB. The monomer
common to dyads 3 and 4 is surrounded on both sides
by an identical monomer and will contribute twice to
the flex energy with a value equal to that of homopoly-
mer A. On the other hand, the monomer common to
dyads 1 and 2 will contribute twice to the flex energy
with a value equal to that of the alternating copolymer

AB. Thus, the dyad concept, as applied here, accounts
for the first-order neighbors. It has the advantage over
that of DiMarzio and Gibbs of implicitly incorporating
some steric exclusion effects.

The distribution of dyads is a function of the mono-
mer sequencing and may be calculated from the rela-
tion derived by Harwood and Richey,29

xAB �
4xAxB

1 � �1 � 4xAxB�	A	B � 1�1/2�
(24)

xAA � xA �
xAB

2 (25)

xBB � xB �
xAB

2 (26)

Here xI and 	I are the mole fraction and the reactivity
ratio30 of monomer I, and xIJ is the mole fraction of
dyad IJ.

For a given copolymer, the only needed information
is the reactivity ratios and the Tg of the alternating
copolymer. The Tg of the alternating copolymer is first
used to obtain the flex energy of the dyad AB. The Tg

of the copolymer along the whole composition range
is then predicted by using the reactivity ratios gener-
ally available in the literature.

Figures 2, 3, and 4 compare the experimental and
predicted Tg of different copolymers with composi-
tion. Figure 2 addresses the case of poly(styrene-co-
methyl methacrylate) as obtained from two different
sources.20,21 Podesva and Biros20 attributed their high
measured value of the Tg of PMMA to its tacticity and
to the measuring technique. Fernandez-Martin et al.31

have reviewed the Tg of PMMA with different tacticity
and found a range from almost 310 to 400 K. This wide
temperature range illustrates the difficulties of any
study related to the Tg. Figure 3 shows excellent agree-
ment between the GCLF-EoS predictions and the data

Figure 2 Glass transition temperature of styrene–methyl
methacrylate copolymers.
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of Podesva and Biros20 for the styrene–octyl methac-
rylate copolymer.

In the above cases, the flex energy of the homopoly-
mers and alternating copolymer were obtained from
the reference data. The model predictions are good
with an average deviation of 2°C. Also, the model
successfully predicts the minima loci for the case of
poly(styrene-co-methyl methacrylate), as shown in
Figure 2. Figure 4 illustrates a case where the value of
the flex energy of the alternating copolymer was ob-
tained as an average of the homopolymers. The results
are excellent. Such agreement can only be expected,
however, in the case where neither steric hindrance
nor specific interactions are involved.

The importance of the monomer distribution is il-
lustrated in Figure 5. Three curves of poly(styrene-co-
methyl methacrylate) were generated by using three
different sets of reactivity ratios found in the litera-
ture. Table I gives the parameter values used for the
pure polymers and alternating copolymer obtained
from the measurements of Hirooka and Kato.21 Signif-

icant deviations are found particularly around the 50%
composition area. The largest deviation is 4.4°C be-
tween case 1 and case 3. Much higher deviations can
be obtained if the homopolymers differ more in their
Tg’s. The locus of the minimum is shifted to higher
MMA concentration as the comonomer sequencing
changes from case 1 to case 3.

The success of the model shows that despite its
simplistic background, the dyad approximation, com-
bined with the mixing rule in eq. (19), can be applied
for the prediction of copolymer Tg with composition
for systems having a large deviation from linearity.
The cases related to n-alkyl methacrylate copolymers
are extreme because the alternating copolymer had a
Tg below that of the homopolymers. In many cases,
such as acrylate solvents and polystyrene,32 the copol-
ymer glass transition is linear with composition. The
alternating copolymer Tg is an arithmetic average of
TgA and TgB, and the model predictions are accurate
without any information on the alternating copolymer
properties, as shown in Figure 4.

In the case where no data are available for the
alternating copolymer, only one measurement ob-
tained from a copolymer of known sequencing is nec-
essary to generate the whole composition range if the
reactivity ratios are known. Indeed, the flex energy of

Figure 3 Glass transition temperature of styrene–octyl
methacrylate copolymers.

Figure 4 Glass transition temperature of methyl acrylate–
vinyl chloride copolymers.

Figure 5 Effect of the copolymer sequencing and compo-
sition on the glass transition temperature of styrene–methyl
methacrylate copolymers. The parameters used are given in
Table I.

TABLE I
Parameters Used for the Cases Shown in Figure 5

Tg (K) 	� (J/mol)

ri

Case 1 Case 2 Case 3

PMMA 385.65 6641.61 0.387 0.611 0.220
378.15 6142.99 2.28 0.371 0.396

Alt.copol.a 364.15 5956.21 — — —

a Alternating copolymer of methyl methacrylate and sty-
rene.
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the alternating copolymer can be obtained from a fit of
the available Tg’s.

Polymer–solvent mixtures

The depression of the Tg with solvents can be calcu-
lated by using eq. (15b). In principle, one needs the Tg

of the polymer and the solvent. Data for solvents,
however, are scarce. As a first approximation, the
solvent is assumed to have a zero value for the flex
energy (i.e., the solvent molecule is totally flexible).
Because the binary interaction parameter is calculated
through the group contribution method, the approach
is totally predictive.

Adachi et al.33 measured the Tg of polystyrene/
toluene solutions throughout the entire composition
range. The flex energy of the solvents could be corre-
lated in these cases. The GCLF-EoS parameters were
obtained and are recommended for use in the range of
270 to 450 K, which is far above the Tg of most sol-
vents. The calculations use only the polymer flex en-
ergy as input. Figure 6 illustrates such calculations for
the polystyrene/toluene and poly(vinyl acetate)/tolu-
ene binary systems. Up to a composition of about 40
wt % of solvent, the model follows the experimental
measurements trend. Above that composition, the
model deviates significantly with the experimental
results because of the assumed zero value of the sol-
vent flex energy. At higher concentrations, the solvent
flexibility cannot be neglected. Furthermore, these cal-
culations were carried out at temperatures far below
the recommended range of the GCLF-EoS model.
Thus, it is not unexpected that the model predictions
are only qualitative.

In an attempt to understand the causes of the model
discrepancies, we compared the predicted solubility of
toluene in polystyrene against experimental data at
25°C34,35 and 110°C.36 The data used at 25°C were
above the Tg of the mixture so that the GCLF-EoS

could be applied. The GCLF-EoS generates an interac-
tion parameter independent of temperature equal to
0.0110 for a polymer molecular weight of 200,000
g/mol. The fit over the experimental data at 110 and
25°C yields a value of 0.0117 and 0.0066, respectively,
indicating that the kij is temperature dependent. The
fitted value was used to generate a similar plot to
Figure 6 so as to investigate the importance of the kij in
the glass temperature depression. The fitted value of
the kij increased the Tg by only 0.2–0.3°C, which is
insignificant. A more extended case is shown in Figure
7. The plot shows the Tg prediction for PS (2 � 105

g/mol) and toluene at 30% solvent weight fraction
with changing values of the interaction parameter. In
these calculations, the flex energy of toluene was taken
equal to 3 � 103 J/mol. Obviously, the error made on
the kij estimation has little influence on the Tg predic-
tion. This was not the case for the work of Condo et
al.11 They studied the carbon dioxide–PMMA system
by using a combination of the Sanchez–Lacombe EoS
and the Gibbs–DiMarzio formalism. In their calcula-
tions, the Tg was calculated for a given pressure at the
maximum solubility of CO2. Changing the binary in-
teraction parameter resulted in a variation of the pres-
sure for the same CO2 solubility and significantly af-
fected the Tg.

Figures 6, 8, and 9 plot the Tg depression of four
different binaries. The model predictions are satis-
factory considering the experimental errors in-
volved in such measurements. Although the data of
poly(vinyl acetate) and toluene37 expand over a
wider temperature range, the model prediction was
limited to the temperature range of the pure com-
ponent parameters. Satisfactory predictions are also
obtained with polystyrene– benzene solutions.38,39

For polystyrene–pentane solutions,40 the results are
more qualitative.

Figure 7 Effect of the binary interaction parameter on the
glass transition temperature of a polystyrene–toluene solu-
tion (30 wt % toluene).

Figure 6 Glass transition temperature of polystyrene–tolu-
ene and poly(vinyl acetate)–toluene solutions.
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All the curves obtained from the model show a
decreasing slope as the solvent concentration in-
creases, that is, the general trend observed for poly-
mers with liquids5,41 or compressed gases.42,43

CONCLUSION

In this work, a group contribution equation of state
was combined for the first time with the Gibbs and
DiMarzio formalism to predict the glass transition
temperature. The expression of the entropy was de-
rived for pure fluids and binaries. Extension to mul-
ticomponent systems is straightforward. Also, the con-
cept of dyads was applied to copolymers and a new
approach for the calculation of the copolymer flex
energy was developed.

The model predictions were quantitative for homo-
and copolymers. For the latter, the proposed formal-
ism has direct engineering applications thanks to the
group contribution method because the only required
information is the alternating copolymer Tg. Although
the equation of state provides the volumetric proper-
ties or interaction with solvents, the combination with
the Gibbs–DiMarzio formalism and the dyad concept
gives access to the Tg.

The treatment of polymer solutions was found to be
qualitative but satisfactory considering the experimen-
tal error. The binary interaction parameter was found
to have a minor influence on the Tg predictions. The
model can be applied to solvent concentrations below
approximately 40% in solvent weight fraction if the
solvent flex energy is taken equal to zero. At higher
compositions, the solvent flexibility cannot be ne-
glected in the overall entropy of the solutions.

A limitation in the use of the model comes from the
pure components parameters, which are restricted to
the range of 270 to 450 K.9 If the pure polymer and
pure solvent PVT are known, the pure component
parameters and kij could be regressed from literature

data and the model could be used over a wider tem-
perature range.
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